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Enhancing the Natural Frequency Doublet Splitting
In Almost Periodic Azimuthally Corrugated Cavities

Andriy SerebryannikoyMember, IEEEand Klaus Schuenemanirellow, IEEE

Abstract—A symmetry of a corrugated periodic structure can ' ' s
be broken due to loading or/and fabrication defects so that fre- o
quency doublets may appear, whose frequencies are just slightly g
splitted. In this letter, we study the potentials to enhance this split- 2 /./' ]
ting by enhancing the asymmetry of the cavity. This is provided by g 1
a single (loaded) resonator which differs in its geometry from other & / |
resonators. The initial causes of the asymmetry are not taken into § ,/ et
account. The used characteristic matrix equation is obtained bya & /:/._,--
mode-matching technique. Itis shown that the doublet splitingcan & /:/ J
reach several percent due to a convenient choice of the geometry of 'afg
the loaded resonator. = ¢ palpi=1.25—*— 1315

Index Terms—Azimuthally corrugated cavity, characteristic § 1r —— 138 —=— 147 y
matrix equation, frequency doublet, frequency splitting. Z > g=8
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I. INTRODUCTION Azimuthal Mode Tndex, q

HE MAIN motivation of the present study was the
development of a new generation of millimeter-wavéig. 1. Cross S(_ection of an a_Imost periodic corrugated cavity and normalized

magnetrons operating at higher (for example, at the f|H§;‘3r/a2'fre:q“0e2§'e§Oltqzc?f'”iF/’)Z';";'Zze:d ngffle"gl/ 7(/150::0'0? i
backward) space harmonic, while the working mode is sveralvalues gf. /.. The azimuthal mode indexis shown on the horizontal
non<r-mode [1]_[3] In these devices, a Waveguide-type Outpg}{is forq =1, 2, ... 6. The frequencies at = 8 are shown by a cross (x).
connected to one of the side resonators (loaded resonator)
is used. In practice, the loade&gHfactor equals up to several Il. THEORY
hundred, so that one should expect that the doublet frequencies
of each doublet differ by no more than 0.5%. Hence, the A cross section of the cavity is shown in the insertin Fig. 1. It
problem of a slight splitting of the frequency doublets, thdtas/V side resonators andl ridges, whereV is assumed to be
occurs for those modes which are employed as working mod@s,even number. We assume that the periodical location of the
appears due to the loading. Another possible cause of a sligifnmetry axes of the resonators remains unchanged so that the
splitting is slight defects in cavity fabrication. axes are located @i = 2xr/N, wherer = 0,1, ... N — 1.

The main goal of this letter is to demonstrate the potential$ie maximum radius and the aperture opening are gives by
of an almost periodic cavity in order to avoid the slight splitand¢o, respectively, for regular resonators, anddyand ¢,
ting. We consider a cavity in which just the geometry of theespectively, for the loaded ong is the radius of the smooth
loaded resonator is different from that of other resonators. $ther conductor. [deal magnetic walls are assumed to be located
far as the expected frequency splitting should be about s@fthe end-faces of the cavity so that the natural frequencies cor-
eral percent, we consider neither the external loading effect igfsponding to the axially homogeneous TE-modes of the cavity
any fabrication defects. The problem of enhancing the splgre equal to the cutoff wavenumbers of TE modes of a wave-
ting, that results from fabrication defects, can occur for anoth@yide showing the same cross section.
application of azimuthally corrugated structures, for example,A solution of the Helmholtz equation for each regular sub-
for quadruple-ridged circular waveguides [4]. The model préegion of the cavity leads to the eigenmode field expansions,
posed here can also be applied to study the potentials of dé(pose coefficients (amplitudes of the space harmonics) are not
blet splitting for the above waveguide structures. In this pap#€t known. Using mode matchingat= p1, we obtain the char-
the emphasis in our numerical study is, however, on structugferistic matrix equation
which show geometrical parameters which are typical for mil-

limeter-wave magnetrons. o0 o0
Gp—0 Y GBT (kpr, kpo) Y (2—67)
s=—00 n=0
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po < p < p1, 6j is the Kronecker deltd#, = 1/27¢g, k = w/c, ' ' ! ' ' ' ' ' '
p,m =0, £1, £2, ...

) Sl ]
O () = b B, (kp1, kp2) @ £
NP (k) =€albH By, (kpy, kps) — @7(k) () o tT .
By =Z (w1, 1)) Zo (21, 21.). (4) g 3k i
w L
In (9~(4), 1 = ™n/do, ny = —ip[(~1)" exp(—ipgo) = & 2| 1
1(v3 — p*) 7 exp(ipdo/2), = 7n/¢1, & = ¢o/¢1, and g A1 ]

the coefficientsh,,, are obtained fron&,,,, by replacingp by |
—s. The coefficients“zgllp) and bﬁ}s) are then obtained frori,,, ok
andb,,; by replacingpo by ¢1 andw,, by v, respectively. The L

functionsZ,. andZ.. are given by

Azimuthal Mode Index, q

Z Az, zp) =J(x1) = Yo(z) I (zn) /Y (2
(@1, 2n) ~(21) w(@0) 7 (2n) /Yo (@n) Fig. 2. Relative splitting factor that is the relative difference between the
and natural frequencies of the cosine- and sine-polarized modes, for the same
. d geometrical parameters as in Fig. 1.

Z‘r(xlv .’L’h) = d_Z‘r(zv xh)

Z=x1

are splitted. For convenience, we have used here that nomencla-

whereJ;, Y., J., andY! are ther’th order Bessel and Neumanrture of the modes, which is usually used for azimuthally corru-
functions and their derivatives, respectivély- 0, 2, 3. gated periodic cavities [5]. The azimuthal indgfor a mode of

In case of¢y = ¢ andpz = pa, @V (k) = 0, so that the almost periodic structure is assumed to be the same as that
(2) is splitted intoN independent matrix equations. Each obf that mode of the periodic structure which shows the same
them coincides with the characteristic equation for one of thg;-value, if p3 and ¢, tend top. and¢q, respectively. How-
allowed values of the azimuthal indexof the azimuthally pe- ever, one “jumps” over the ranges of a possible location of de-
riodic cavity [5], ¢ + mN = s,q = —N/2+ 1, —N/2 + generacy and other critical points. Such a nomenclature is most
2,...0,1,...N/2—1, N. The mode withy = N/2 is known appropriate to compare between the periodic and almost peri-
as ther-mode. Ifp; = p; andpy = 0, @7 (k) = 0. In this case, odic structures. For both structures, there is a cosine-polarized
(1) represents the characteristic equation of the cutoff wavenumede, which should be related to the first passband, while a cor-
bers of the single-ridged waveguide [4]. No additional adapteesponding sine-polarized should be related to the second pass-
tion of (1) is needed for the double- and quadruple-ridged cirand. In line with the used mode nomenclature, this mode is
cular waveguides [4]. TEny2,1 in the periodic case. We will refer to the similar mode

The structure shown in Fig. 1 has a single axis of symmetiy, the almost periodic case as to that with- N /2, too.
which coincides with the axis of symmetry of the loaded res- At ¢ = 1, 2, ... N/2 — 1, the only difference between the
onator. If V is rather large, one should expect that the symmperiodic and almost periodic cases is that for each pair of the
tries of the periodic structure, which have been broken duedosine- and sine-polarized modésg; -values are equal in the
the loading, exert an effect on the natural frequency spectruformer case but differ in the latter. Both the cosine- and sine-
too. Hence the spectrum in our case should show the featupetarized modes are related to the first passband for these
of the spectra of both single-ridged and periodic multi-ridged It can be seenin Fig. 2 that the strongest frequency splitting at

structures. g = const occurs af = R, R + 1, which satisfy the inequality
For computational convenience, we split (1) into two inde-
pendent matrix equations, which correspond to the cases of co- kr <knj2 < kryr- (5)

sine- and sine-polarizations. The splitting is possible due to tlg
first-order symmetry of the considered structure. It has bee - . :

. . oo value of K,. = p3/p2, one can provide fulfillment of (5) for any
done by using the unambiguous coincidence between exponje_‘?n-

i i i i i - R'1< R < N/2-2.Thekp;-value aty = N/2 much stronger
tial- and sine/cosine-function-based expansions of the elgea“é- ends oti¢.. than onk . Besides. it much stronaer depends
mode field in regionpy < p < p1, and the formula for the P r ¢ Ides, it mu g9 p

integer-order Bessel and Neumann functions thétis(z) = on K, than that ag # N/2 so that thesp, -value is r_nglnly -
(—1)7U. () [6, p. 358], wherer means an integer arid, ei- fluenced by the only nonbroken symmetry. The efﬂqency of thg
therJ.. or Y,.. The normalized natural frequencies, are then proposed way to enhance the splitting can be lost if the density

g : f[the frequency spectrum for each of two polarizations is too
calculated as zeroes of the truncated characteristic determm%ln h. Then one should use a cavity with smalémnd
for each of the two polarizations. an. Y p2/p1

in order to decrease the density.

The values ofkp; andn are given in Table | for several
modes and cavities, thus demonstrating additional potentials to
Figs. 1 and 2 shovkp,, corresponding to the cosine-polarincrease). The cavity A in the Table | shows the following geo-
ized TE-modes, and a relative splitting factgrespectivelyn, metrical parametersio/p1 = 0.5, p2/p1 = 1.25, 9 = 0.53,
characterizes the extent to which the frequencies of each douldletl N = 16. For the cavity B, we have sei/p1 = 0.5,

fg. 3 showskp; for ¢ = N/2 for several cavities. Selecting a

Ill. RESULTS
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45 T T T T T T T T T TABLE 1l
> -7 e =125 kp1-EIGENVALUES OBTAINED BY USING SEVERAL TRUNCATED
2 40} 7 pafp=1. E CHARACTERISTIC MATRICES FOR THECAVITY WITH p2/p1 = 1.25 AND THE
% —e— 1315 SAME OTHER PARAMETERS AS INFIG. 1
& 35 —* —Aa— 138 4
6o 3
= —— 147 mam|l | yop | sg | 7205
B 30p . maxn
< *. 2 1 . ..
Z cosine-polarization
2 25 e———— .
. 7 7 \o ] g=2 | 2.0809 | 2.0759 | 2.0758
20 1 -
Z 2 ] 8 2.5710 | 2.5422 | 2.5401
i 2 .
13 \: ] 3 [3.0507 | 3.0486 | 3.0474
1 O 1 1 1 n 1 2 1 1
' 1 2 3 4 5 4 3.5186 | 3.5278 | 3.5253
Q sine-polarization
Fig. 3. Normalized natural frequencies for the cosine-polarized mode 2 2.1398 | 2.1413 | 2.1416
TEn~/2,1 for cavities with different geometrical parameters of the loaded
resonator,. = 1.0 at@Q, = 1,2, K, isequalto 1.1, 1.2,and 1.4 @t = 3, 3 2.9029 | 2.9084 | 2.9077
4, and 5, respectivelyk, = 1.0 at@, = 1 and 0.5 otherwise; the values
of po/p1, N, andd are the same as in Fig. 1. A number at the signs showing 4 3.4186 | 3.4288 | 3.4264

the frequencies$, means the largegtvalue, for which thecp, -eigenvalue is
smaller than that af = N/2; in cases 0ps/p; = 1.315 andps/p, = 1.38,
the S-value is equal to that in case pf/p; = 1.25 for eachQ.

kp1-eigenvalue in a wide range of the variation of the geomet-

rical parameters.

TABLE |
SEARCHING FORPOTENTIALS TO MAXIMIZE THE SPLITTING OF THE
FREQUENCY DOUBLETS: THE 1-VALUE FOR SEVERAL CAVITIES AND MODES
FOR WHICH THE SPLITTING IS STRONGLY PRONOUNCED

IV. CONCLUSIONS

In this paper, the peculiar features of the natural frequency
spectrum have been studied for the first passband of the almost
periodic cavity, whose loaded resonator is distinguished from
the other resonators in its depth and aperture opening. It has
been shown that a relative splitting of the frequency doublet can
be provided at a value of several percent. The proposed way to
enhance the splitting is most promising for a cavity having rather

Cavity | Kr | K¢ qlS kp 1, %
A 11| 16 1/3 1.102 | 3.56
A 1.1 1.6 3/3 2724 7.22
B 1.0 | 05 1/3 0.706 | 4.51
B 12 | 05 211 1.096 | 6.15
B 14 | 05 171 0.594 | 13.6
B 14 | 05 2/1 1.084 | 5.45

p2/p1 = 1.9,¢ = 0.71, and N = 8. As can be seen, iV

is small enoughy can reach several percent everkif = 1.
The use of a cavity witli(, > 1 also results in enhancing the
doublet splitting even ip3/p- is rather small.

All results given in Figs. 1-3 and in Table | have been ob-
tained, while 5 space harmonicsin regian< p < p, are taken
into account. A number of the harmonics in regien< p < p;
has been chosen by taking into account the relative convergence
phenomenon. Table Il demonstrates the accuracy of simulationt]
while a ratio of the numbers of the harmonics is close to that
which is optimum from the point of view of the relative conver- [5]
gence.max |m|andmaxn show the maximum values ¢fn|
andn occuring in the matrix, respectively. The use of a larger

: . 6]
number of the harmonics as compared to that used to obtain thE
results in Table Il does not lead to any substantial variation in

(1
[2]

(3]

small values of the number and depth of resonators.
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